Problem of the Week

Problem 6 solution

Congratulations to Ivan at St Bede’s Inter-church School and Julia for solving Problem 6.

(i) By the quadratic formula, the roots are given by

    \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \text{.} \]

So there are two roots if b^2 > 4ac, there is one root if b^2 = 4ac, and there are no roots if b^2 < 4ac. Hence there is at most one root if and only if b^2 \le 4ac.

(ii)

    \[ \sum_{k=1}^n (a_kx+b_k)^2 \ge 0 \]

    \[ \sum_{k=1}^n (a_k^2x^2+2a_kb_kx+b_k^2) \ge 0 \]

    \[ \sum_{k=1}^n a_k^2x^2 + \sum_{k=1}^n 2a_kb_kx + \sum_{k=1}^n b_k^2 \ge 0 \]

    \[ \left(\sum_{k=1}^n a_k^2\right)x^2 +\left(2\sum_{k=1}^n a_kb_k\right)x +\sum_{k=1}^n b_k^2 \ge 0 \]

If \sum_{k=1}^n a_k^2 = 0, a_k = 0 for all k and hence \left(\sum_{k=1}^n a_k b_k\right)^2 = 0 \le \left(\sum_{k=1}^n a_k^2\right) \left(\sum_{k=1}^n b_k^2\right) = 0, as required. Otherwise, this is a quadratic in x and has at most one root since it is non-negative for all x. So by (i),

    \[ \left(2\sum_{k=1}^n a_kb_k\right)^2 \le 4\left(\sum_{k=1}^n a_k^2\right)\left(\sum_{k=1}^n b_k^2\right) \]

and hence

    \[ \left(\sum_{k=1}^n a_kb_k\right)^2 \le \left(\sum_{k=1}^n a_k^2\right)\left(\sum_{k=1}^n b_k^2\right) \text{.} \]

Submit a solution!

Site Search