Problem of the Week

Problem 1 solution


This is a classic derivation of the golden ratio from its definition.

\textbf{Method 1:}
\frac{a+b}{b} = \frac{b}{a}
\frac{a}{b} + \frac{b}{b} = \frac{b}{a}
\textbf{Let}\; x = \frac{b}{a}
\frac{1}{x} + 1 = x
1 + x = x^2
x^2 - x - 1 = 0
\textit{(Using Quadratic Formula)}\; x = \frac{1 \pm \sqrt{5}}{2}
\textbf{Note: } \frac{b}{a}>0, \quad \frac{b}{a} = \frac{1 + \sqrt{5}}{2} \approx 1.618

\textbf{Method 2:}
\frac{a+b}{b} = \frac{b}{a}
a^2 + ab = b^2
b^2 - ab -a^2 = 0
\left(b - \frac{a}{2}\right)^2 - \frac{5a^2}{2} = 0
b - \frac{a}{2} = \pm \frac{a\sqrt{5}}{2}
\textbf{Note: } b>0, \quad b = \frac{a+a\sqrt5}{2}
\frac{b}{a} = \frac{1+\sqrt{5}}{2} \approx 1.618

Site Search