Problem of the Week

Problem 8

Rendered by QuickLaTeX.com

In the above triangle,

(1)   \begin{equation*} 0 < a \le b \le c \end{equation*}

and

(2)   \begin{equation*} 0 \le \alpha \le \beta \le \gamma \le 180^\circ \text{.} \end{equation*}

(i) Show that if 0 \le \theta \le 180^\circ, \sin \theta = \sqrt{1-(\cos\theta)^2}.

(ii) Show algebraically using only the cosine rule, inequalities (1) and (2), part (i) and the identity \cos(\alpha+\beta)=\cos\alpha\cos\beta-\sin\alpha\sin\beta that \cos(\alpha+\beta)=-\cos\gamma and \alpha,\beta\le90^\circ.

(iii) Deduce that \alpha+\beta+\gamma=180^\circ.

Submit a solution!

Site Search