Cambridge Mathematics School Admissions Test Mark Scheme

Specimen Paper 2

Mark Scheme

Marking instructions

- Each question in sections A and B scores 2 marks for the correct answer or zero for no answer, the wrong answer or more than one answer.
-
- For section C
- M marks are for working and are given for a correct method, clearly shown even if there are some errors of arithmetic.
- A marks are for the correct answer from correct working and can only be given if all the M marks so far in that part of the question have been earned.
- B marks are independent marks.
- Candidates may use any correct method; if this method is not in the mark scheme, award marks in a way that is as similar as possible to the methods shown in the mark scheme.

Section A

Number	Solution	Mark	Guidance
			Either 2 or zero for each question on Section A.
1	C A circle of radius 3 cm	2	Example reasoning Area of A is $24, \mathrm{~B}$ is $25, \mathrm{C}$ is 9π which is a little over 27 , D is 27 and E is 8π
2	D $3 \frac{1}{3}$ square units	2	Example reasoning When $x=0, y=-2$. When $y=0, x=10 / 3$ Area $=\frac{1}{2} \times 2 \times 10 / 3=10 / 3=3 \frac{1}{3}$
3	A 2×10^{7}	2	Example reasoning This can be rewritten as $\frac{32 \times 10^{5} \times 45 \times 10^{3}}{72 \times 10^{2}}$. This simplifies to 20×10^{6}. $=2 \times 10^{7}$ in SI form
4	D 9:4	2	Example reasoning $P Q R$ is similar to $S Q T$ with length scale factor $\frac{2}{3}$. Let the height of $P Q R$ perpendicular $P R$ to be h. The height of SQT will be $\frac{2}{3} h$ and $\mathrm{ST}=\frac{2}{3} \mathrm{PR}$. Area of $\mathrm{PQR}=\frac{1}{2} \mathrm{PR} h$, area of $\mathrm{SQT}=\frac{1}{2} \cdot \frac{2}{3} \mathrm{PR} \cdot \frac{2}{3} h=$ $\frac{1}{2} \cdot \frac{4}{9}$ PR h ratio $1: \frac{4}{9}$ i.e. $9: 4$
5	C $£ 20$	2	Example reasoning The youngest receives $\frac{4}{5} \times \frac{5}{6}=\frac{2}{3}$ of the eldest's amount $\begin{aligned} & \frac{2}{3} e+\frac{5}{6} e+e=50 \text { multiply by } 6 \\ & 4 e+5 e+6 e=300 \\ & \text { giving } e=20 \\ & \hline \end{aligned}$
6	$\text { D } 5 \times \frac{p^{3}}{10 q^{2}} \times \frac{3}{(p q)^{3}}$	2	Example reasoning Considering indices for q : A is $q^{4-3}=q, \mathrm{~B}$ is $q^{3-2}=q, \mathrm{C}$ is q, D is $q^{-2-3}=q^{-5}, \mathrm{E}$ is $q^{-3+5-1}=q$

Number	Solution	Mark	Guidance
7	A Their sum must be a multiple of 3	2	Example reasoning If the first number is n then the 3 consecutive numbers add up to $3 n+3$ This is a multiple of 3 for all n. Counter examples can be found for statements B, C, D e.g. B any even n, \mathbf{C} any odd $n, \mathbf{D} n=2$ \mathbf{E} cannot be true if \mathbf{A} is true.
8	$\text { A } \frac{1}{2}$	2	Example reasoning $\begin{aligned} & \mathrm{P}(3)+\mathrm{P}(6)=\frac{1}{3},, \mathrm{P}(2)=\frac{1}{12}, \mathrm{P}(5)=\frac{1}{12} \\ & \mathrm{P}(2)+\mathrm{P}(3)+\mathrm{P}(5)+\mathrm{P}(6)=\frac{1}{3}+\frac{1}{12}+\frac{1}{12}=\frac{1}{2} \end{aligned}$ So $P(1)+P(4)=1-\frac{1}{2}=\frac{1}{2}$
9	B 4	2	Example reasoning The only points satisfying $x>0, y>0$ and $x+y<5$ are $(1,1),(1,2),(1,3),(2,1),(2,2)$ and (3,1) From these, all but $(1,2)$ and $(1,3)$ satisfy $y<2 x$ so there are 4 points
10	$\text { B } 3\left(1-\frac{\pi}{4}\right)$	2	Example reasoning A quarter of the circle has area $\frac{\pi}{4}$. The small square, with side $O Q$, minus a quarter circle has area $1-\frac{\pi}{4}$. There are two complete sections like this and two sections that are half of this making 3 sections in total so the total shaded area is $3\left(1-\frac{\pi}{4}\right)$

Section B

| Number | Solution | Mark | | Guidance |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 1}$ | D 20 | | Either 2 or zero for each question on Section B. | |

Number	Solution	Mark	Guidance
13	E The country with the largest population won the most medals.	2	Example reasoning A is not true as the smallest population (<1 million) won 1 medal but the three larger countries from the table won 0 medals. B is not true as there are points showing smaller countries having more medals than some larger countries. C is not true as one country with just under 10 million population won 17 medals D cannot be a conclusion as relative wealth is not indicated E is true, the largest country with a population of 44 million won 20 medals (the most)
14	E 176	2	Example reasoning There are 11 numbers starting with 1 from 1 to 99 (1 and $10-19)$. Every number from $100-199$ starts with 1 so there will be $11+n-99=n-88$ numbers starting with 1 from 1 to n (for the given values of n). $\frac{n-88}{n}=\frac{1}{2}$ gives $n=176$
15	C Around the same amount of rain fell in Beijing in May, June and July of 2015 as fell in August September and October of 2015.	2	Example reasoning 1987 $\begin{aligned} & \mathrm{MJJ} \approx 2.1+3+3.5=8.6 \\ & \text { ASO } \approx 8+1.1+0.5=9.6 \\ & \text { Total } 8.6+9.6=18.2 \\ & 2015 \\ & \mathrm{MJJ} \approx 1.1+1.6+3.7=6.4 \\ & \mathrm{ASO} \approx 2.8+3+0.6=6.4 \end{aligned}$ Total $8.6+9.6=12.8$ A no, $8.6<9.6$ B no, $18.2 \neq 2 \times 12.8$ C yes, $6.4=6.4$ (or close values) D no, $9.6 \neq 6.4 \mathrm{E} \mathrm{no}$, not wettest in 2015

Number	Solution	Mark	Guidance
16	B 7	2	Example reasoning There is 1 way that the total of the first two digits is 1 (10) and 2 ways for the total of the last two digits to be 1 (10 and 01) giving 1010 and 1001 For a total of $2: 1$ way for the first two (11) and 3 for the last two (20,11 and 02) giving 1120, 1111, 1102. For a total of 3 : 1 way for the first two (12) and 2 for the last two (12 and 21) giving 1212, 1221. Giving $2+3+2=7$
17	A $2^{2} \times 3 \times 5^{2}$	2	Example reasoning 6000 does not divide by 9 so eliminate B and D 4500 does not divide by 8 so eliminate C The two remaining options have $2^{2} \times 3$ as factors Dividing all three by $\left(2^{2} \times 3\right)=12$ gives $450,375,500$ All are divisible by 25 but 450 is not divisible by 125 so eliminate E . Alternatively $\operatorname{hcf}(5400,4500,6000)=2^{2} \times 3 \times 5^{2}$
18	E 120	2	Example reasoning The sequence is $(n+1)^{2}-1$ (can cut up and reassemble to $n+1$ sided squares with a 1×1 square missing) $(10+1)^{2}-1=121-1=120$
19	E 100	2	Example reasoning Let a be the number of starfish, b the number of shrimp and c the number of octopuses $\begin{aligned} & a+b+c=200 \\ & 4 a+6 b+8 c=1400 \\ & 4 a+6 b+8 c=1400 \\ & 6 a+6 b+6 c=1200 \\ & -2 a+2 c=200 \\ & c-a=100 \end{aligned}$

Number	Solution	Mark	Guidance
20	B 25\%	2	Example reasoning $\begin{aligned} & \frac{1}{a}-\frac{1}{b}=\frac{3}{5}\left(\frac{1}{a}+\frac{1}{b}\right) \\ & \frac{5}{a}-\frac{5}{b}=\frac{3}{a}+\frac{3}{b} \\ & \frac{2}{a}=\frac{8}{b} \\ & 2 b=8 a \\ & a=\frac{1}{4} b \end{aligned}$

Section C

Number	Solution						Mark	Guidance
	Alternative method $d=2 \sin 45^{\circ}=\sqrt{2}$ (alternatively $d=2 \cos 45^{\circ}$ or $2 d^{2}=4$) $\begin{gathered} \text { Shaded area }=4 \times(2 \times \sqrt{2})+4 \times\left(\frac{1}{2} \times \sqrt{2} \times \sqrt{2}\right) \\ =4+8 \sqrt{2} \mathrm{~cm}^{2} \end{gathered}$							Award if d is stated as $\sqrt{2}$ or the correct length is marked as $\sqrt{2}$ on a diagram. Allow $\frac{2}{\sqrt{2}}$ for $\sqrt{2}$. M1 evidence of splitting shaded shape into rectangles and triangles. A1 if these are correct. Allow equivalent using $\frac{2}{\sqrt{2}}$ for $\sqrt{2}$ i.e. $4+\frac{16}{\sqrt{2}}$ Allow ft from incorrect area. B1 for correct units.
							[5]	
22 a)	If the red dice is a 2 then the other 2 must sum to 4,7 or 10						B3	Award 3 marks for all 12 correct possibilities listed with no incorrect possibilities Award 2 marks for 9-11 correct possibilities Award 1 mark for 5-8 correct possibilities
	B	B Y	B	Y	B	Y		
	1	1 3	1	6	4	6		
	2	2 2	2	5	5	5		
	3	$3-1$	3	4	6	4		
			4	3				
			5	2				
			6	1				

Number	Solution	Mark	Guidance
$22 \mathrm{~b})$	For $\mathrm{B}+\mathrm{Y}=4, \mathrm{R}+\mathrm{B}+\mathrm{Y}=6$ For $\mathrm{B}+\mathrm{Y}=7, \mathrm{R}+\mathrm{B}+\mathrm{Y}=9$ For $B+Y=10, R+B+Y=12$ The only ones that give a square number are $B+Y=7$	B2	Award 2 marks for all 6 correct possibilities listed with no incorrect possibilities Award 1 mark for 3-5 correct possibilities or ft selecting correct possibilities from their answer to (a)
		[5]	

Number	Solution	Mark	Guidance
23 a)	$1+2+3+\cdots+12=78$	A1	
$23 \mathrm{~b})$	The sum of the 4 edges will use the numbers $10,11,12$ and n twice and everything else once $\begin{aligned} & (1+2+3+\cdots+12)+10+11+12+n \\ & =78+33+n \\ & =111+n \end{aligned}$	M1 A1	M1 for using the corner values twice A1 for correct simplification to $111+n$
$23 \mathrm{c})$	The total along each edge is the same and must be an integer. There are 4 edges hence the overall sum is a multiple of 4 .	B1	Any correct explanation that identifies that the total for each side can be found by dividing by 4 .
$23 \mathrm{~d})$	$\begin{aligned} & \frac{111+n}{4}=27+\frac{n+3}{4} \\ & n+3 \text { is a multiple of } 4 \\ & n+3=4 \text { gives } n=1 \\ & n+3=8 \text { gives } n=5 \\ & n+3=12 \text { gives } n=9 \end{aligned}$ The next value would be greater than 12 .	M1 A2	M1 for any correct strategy (using the equation shown or by trying values for n) A2 for identifying all 3 correct values for n A1 for identifying 2 of the correct values for n

23 e)	For $n=1$ the total along each edge is $27+\frac{4}{4}=28$ The available numbers to complete the square once the corners have been inserted are $2,3,4,5,6,7,8$ and 9 . The left hand column starts with a 12 and finishes with 11 so the other two numbers must add up to 5 . This can only be done using the 2 and 3 . The top row starts with a 12 and ends with a 10 so the other two numbers add up to 6 . None of the remaining numbers will do this so $n=1$ does not work. For $n=5$ the total along each edge is $27+\frac{8}{4}=29$ The available numbers to complete the square once the corners have been inserted are $1,2,3,4,6,7,8$ and 9 . The left hand column needs 6 more to make this total. This can only be done using the 2 and the 4 . The top row needs 7 more to make 29 . This must use the 6 and the 1. The right hand column needs 14 more to make 28 . No pair of numbers from the remaining digits ($3,7,8$ and 9) add up to 14 so $n=5$ does not work. For $n=9$ the total along each edge is $27+\frac{12}{4}=30$ The available numbers are $1,2,3,4,5,6,7$ and 8 . The left hand column needs 7 more to make 30 . This can be done using the 6 and the 1 . The top row needs 8 more to make 30 . This can be done using the 5 and the 3 . The right hand column needs 11 more to make 30 . This can be done with the 7 and the 4 . The bottom row needs 10 more to make 30. This can be done using the 8 and the 2 . $n=9$ is the only one that works.	B1	Any correct explanation identifying that the 4 totals can not be made using the values available Any correct explanation identifying that the 4 totals can not be made using the values available Confirming correctly that $n=9$ does give a possible solution.
		[10]	

